A single degree of freedom ‘lollipop’ model for carbon nanotube bundle formation

نویسندگان

  • Steven Cranford
  • Haimin Yao
  • Christine Ortiz
  • Markus J. Buehler
چکیده

Current carbon nanotube (CNT) synthesis methods include the production of ordered, free-standing vertically aligned arrays, the properties of which are partially governed by interactions between adjacent tubes. Using material parameters determined by atomistic methods, here we represent individual CNTs by a simple single degree of freedom (SDOF) “lollipop” model to investigate the formation, mechanics, and selforganization of CNT bundles driven by weak van der Waals interactions. The computationally efficient SDOF model enables us to study arrays consisting of hundreds of thousands of nanotubes. The effects of nanotube parameters such as aspect ratio, bending stiffness, and surface energy, on formation and bundle size, as well as the intentional manipulation of bundle pattern formation, are investigated. We report studies with both single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes (DWCNTs) with varying aspect ratios (that is, varying height). We calculate the local density distributions of the nanotube bundles and show that there exists a maximum attainable bundle density regardless of an increase in surface energy for nanotubes with given spacing and stiffness. In addition to applications to CNTs, our model can also be applied to other types of nanotube arrays (e.g. protein nanotubes, polymer nanofilaments). Submitted to: Journal of the Mechanics and Physics of Solids (accepted manuscript #: JMPS-D-09-00239R1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder

In this study, it was attempted to design a high-performance single-walled carbon nanotube (SWCNT) bundle interconnects in a full adder. For this purpose, the circuit performance was investigated using simulation in HSPICE software and considering the technology of 32-nm. Next, the effects of geometric parameters including the diameter of a nanotube, distance between nanotubes in a bundle, and ...

متن کامل

Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite

In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...

متن کامل

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

متن کامل

Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite

In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...

متن کامل

Postbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method

In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009